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Extended local balance model of turbulence and Couette-Taylor flow
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An extended local balance model of turbulence, based on a new transport equation for the dissipation rate
with a negative diffusion coefficient, is presented. Analytical solutions for the mean velocity and the dissipa-
tion rate for the turbulent Couette-Taylor problem are derived. The dependence of torque on the Reynolds
number is obtained. These solutions depend only on two condtaris andC=9.5 of the turbulent bound-
ary layer and, within the limits of a narrow channel, are reduced to the well-known vonads solutions for
planar Couette flow. Strange attractor behavior in this limit is also observed.

PACS numbd(s): 47.27.Nz, 05.45-a
. INTRODUCTION Ui+ U0,y = — Ip* +d;(vrd;u;) — ad*(D1d%u;), (1)

Th_e_ existing models of fully developed turbulence can beﬁtSJr Ud,e =B keS— K—laj(,}ﬁjs)]_ y?(D1d%), (2)
classified as large-scale models and small-scale models.
Small-scale models deal with eddies smaller than the integral
scale of turbulencélarge eddy simulation in the Smagorin-
sky type of models Subgrid Reynolds stresses depend es- . i
sentially on the spatial grid size. Large-scale models deterwhlereui '? the ’)“Ea”’ or Iarge-scgle_, ve_IOC|ty:(1,2,3),_s
mine the integral scale of turbulence by means of its_ 2(v(d)y, +aup) ) dgr;otes tr’1e,d|ss_|pat|on rati?_,_= d;di 1s
independent variableéor its derivatives In recent years, the sum ovei, p*=g~"p+(uju;)/3 is the modified pres-
there has been a great deal of interest in the possible conne?dre. @, 8,y denote constants of the mode, is the von
tion between fully developed turbulence and deterministid<@man constantSis the invariant of the strain rate tensor
chaos. There is eviden¢] that for some types of turbulent S=2S;;S;i with S;;=1/2(d;u; + d;u;), vr=¢/S" is a coef-
flow there is a chaotic attractor with a dimension about 1dicient of turbulent viscosity, an®+=¢%S” is a coefficient
even for large Reynolds numbers. It may be expected thadf “superviscosity,” derived from dimensional analysis.
large-scale models demonstrate such chaotic behavior, but Very simple but unusual assumptions are made. It is as-
classical large-scale models such as thes“model,” “ k-w sumed that the transport equation of the dissipation rate of
model,” and models of Reynolds stresses transport give onljurbulent energy depends only on the dissipation rate itself,
an extremely smooth distribution of such variables as meahe invariantS, and their spatial derivatives. A conservative
velocity, kinetic energy, and dissipation rate in space and iform of the equation is postulated. The first linear term on
time. Thus, the creation of new models with chaotic tempothe right-hand side of Eq(2) provides the growth of the
rary (at least and realistic spatial distributions are very de- dissipation rate. It corresponds to the growth of small-scale
sirable in theoretical as well as in practical aspéptspaga-  Vorticity under strong shear strdii] and this term is similar
tion of waves through turbulent medium, weather forecast to linear terms in the well-known Saffmdaw model[10].

Investigations of deterministic chaos in extended system# order to compensate this source term in &), the sec-
are mostly carried out based on the Kuramoto-Sivashinsk@nd term must be included with a negative coefficient of
equation[2,3]. The essential dependence on the initial con-diffusion. It can be easily seen in a logarithmic boundary
ditions is provided by a negative coefficient of diffusion. layer: e =u*%/(«x), S=u*/(«xx), whereu* is the skin fric-
Regularization of such ill-posed mathematical problems igion velocity andx is the distance from a wall. This situation
obtained by adding the operatd® (A denotes Laplace’s is different from the well-knowrk-¢ model[11], where the
operatoy in these equations. A model with a negative coef-diffusion of the dissipation rate is the usual diffusion with a
ficient of turbulent viscosity was considered [4], and a  Positive coefficient of diffusion. The third term on the right-
hypothesis of “a negative diffusion” of vorticity was pro- hand side of Eq(2) cuts off small-scale components of the
posed in[5]. They stimulated us to present an alternativedissipation rate and limits the growth of the dissipation rate
model of turbulence. due to the cube of the dissipation rate outside of the logarith-
mic boundary layer. This regularizing term is equal to zero
inside the logarithmic boundary layer, where Reynolds
stresses are constants. The expression for turbulent viscosity

A hypothesis of the negative diffusion of the dissipation vr=¢/S” can be readily derived from the approximation of

rate and an extended local-balance model were put forwartl® turbulent energy local balance: production is equal to
in [6] and developed if7,8], dissipation in the equation of balance of turbulent energy

[12]:

d;u;=0, ©)
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or Taking into account the local balance assumpt{gp we
L haverS=¢ (7 is known, and excludingS, the equation for
—(ujuj)dUj=e. (5 the dissipation will be reduced to a nonlinear ordinary dif-

. ferential equation fok:
Indeed, if we set

_<uiluj,>:2VTSij+5ij<ui,ui,>/3 (6) SZrZTI]'rIZ—K_Zr_1(7r(|'_37']?2r18_1(9r8):0. (8)

and substitute this expression in the equation of the localhis equation is readily reduced to standard form by the

turbulent energy balance, then turbulent energy comes ogubstitutiong=r*, and returning to the initial variablewe

from this equation due to the incompressibility condition. It shall have a unique solution satisfying the boundary condi-

was done for the first time ifL3]. In this manner we obtain tions[6,8]:

the expression for the coefficient of turbulent viscosity,

which is written above. e=4a%ur3mk Y(b*—a*) tesd w(rt—a*)/(b*—a%)].
Boundary conditions are determined as in the standard (9

“k-g¢ model” by the wall functionsi=u, «~* In Cu,x/v and

e=u3/(kx), x—0, wherex is the distance from the wall We shall have for the cylinder geomet8s —d,(u/r) for

andu, is the skin friction velocity. the chosen direction of the cylinders’s rotations. DueSto
The first term on the right-hand side in the dissipation rate= &/ 7, the resulting equation for the mean velocity is

transport equation can be explained by the total increase of

small-scale vorticity under strong large-scale shear. The sec-rd,(u/r)=4mr?auf« }(b*—a*) !

ond term compensates for the first in the logarithmic turbu- 4 aea a4

lent boundary layef“negative diffusion” of dissipation ap- xXes¢m(ri—ah)/(b*—a")]. (10)

pears in a formal way Terms in both evolutionary equations ] ] o

for u and e with spatial derivatives of fourth order do not After integration over the gap, the mean velocity is

eliminate the existence of the logarithmic layer in the model,

but they do cut off small-scale modes and limit the growth of u=—darume '(b*—ah) !

the unstable integral scale-size modes of large-scale velocity ]

and dissipation. . X f Resd m(R*—a*)/(b*—a*) JdR+ wor, (11)
Note that the model applied to the plane turbulent Couette p

flow possesses a self-regularizing propéhging considered
on a large-scale spatial gjidThe stationary solution, coin- wherewg is an integration constanp, is an arbitrary point,

ciding with von Kaman solution[14], is stable[7]. and a<p<b. The integral has singularities at=a andr
=h, thus it is convenient to regularize the integral by sub-
Ill. TURBULENT COUETTE-TAYLOR FLOW tracting the corresponding singularities. Valueg and uj;,

i bulent flow b . __can be obtained by making the solution fofit the logarith-
I!_et us con3|her turbu efnth ow between two contrarotr(la\tmgmic wall functions atr =a andr =b. The arbitrary constant
cylinders (or when one of them is at restv, denotes the s gliminated in the final formula, and a nonlinear algebraic

rotatiqnal velocity of the_ inner cylindex;, i§_ the rotatiqnal equation at this stag@ resistance law such as that of von
velocity of the outer cylinder, and the radii of the cylinders Karman—Prandfl is derived foru* . Omitting evident alge-
n:*

area,b (b>a). Angular velocities arav; =v;/a and w, — yaic yransformations, the final results are
=v,/b. Let the inner cylinder rotate in a counterclockwise '
direction (or be at restand the outer cylinder rotate in a _ ) 4 1
clockwise( direction(orsbe at rest Bound;ry conditions are u(Q)/(va@)=—4z« " m(Q"=1) "

defined asu=v,—u}x tInC(r—a)u/v if r—a, u=—v, —zk UN[CRZ2q—1)/(Q—1)]+1,
+ur,ktInCb—r)ut /v if r—b, e=uX k" Y(r—a) "t if

r—a, e=u*3x " Y(b—r)"tif r—b, ris the distance from

the axis of the cylindersy, is the skin friction velocity at where

the inner cylinder, andi},, is the skin friction at the outer

cylinder. For turbulent Taylor-Couette flow, as it is well q

known, turbulent stressesvary with channel width as J1(9,Q)= L (x{csg m(x*—1)/(Q*—1)]

(12

mP=1iri=1,03, —(Q*=1(4m) *(x-Dpdx. (13

—*2 g *2
wherer=uy” and r,=ug; -

As we limit ourselves to a stationary problem, the regu-Here: R:"l(b_*a)/” is the Reynolds numbeg=r/a, Q
larizing spatial derivatives of fourth order will be omitted. =0/@, andz=uj/v, (dimensionless skin friction velocitys
Then we shall seek the solutions-u(r) ande=«(r). The  calculated from the nonlinear equatitresistance layv

dissipation rate transport equation in the cylindrical coordi-
nates will be AQur kY (Q*—1) "y +ukQxtIn[Cuf(b—a)/v]

keS—k r 19,(reS 29,6)=0. (7) +u3ut"_lIn[CU;ut(b_a)/V]:VZ"'VlQ: (14
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TABLE |. Dependence of experimental5] and theoretical TABLE lll. Experimental [17] and theoretical(model pre-
(model presenteddimensionless torqué on the Reynolds number sented resistance Iaws§=log10(72/pv§), radius ratioa/b=0.75,
(inner cylinder rotates, outer cylinder is at pesiadius ratioa/b Reynolds numbeR,=v,(b—a)/v (inner cylinder is at rest, outer

=0.7253. cylinder rotates
R Gexpt Gtheory IleO Rl gexpt gtheory
10° 4.0 10° 1.0x10° 4.04 -3.27 —3.46
10t 8.4x 10° 5.4x 10° 4.36 —3.52 -351
10° 4.2x10° 3.3x10° 453 —3.50 —3.55
10° 2.7x10° 2.2x10° 4.64 —3.53 —3.58
4.75 —3.54 —3.59
where Jo=JLdx{x cs¢ m(x*—1)/(Q*—1)]—(Q*
—1)(4m) " Y(x—1)" 1= (Q*-1)(4m) "1Q 3(Q—x)"1}. are matched. It was chosen in the middle of the gap. It is

It can be shown that the solution is reduced to a vorevident if the gap is narrow, but where is the matching point
Karman solution[14] for plane Couette flow in the narrow- that should be chosen in the case of the wide gap and at

gap limit [8]: arbitrary rotating velocities of cylinders?
Since solution(14) does not include constants besides
u=u*«"*Intar{xm/(4h)], =0.4 andC=9.5, it can be applied for arbitrary turbulent
Couette-Taylor flow(except for corotating cylinders, where
e=u*3k"(2h)"tesgxa/(2h)], the shear strain rate is not large enoudus, the presented

) ) ) _ generalized von Kanan solutions can be used as a test for
where 2n is the channel width ang is the distance from a - fyture experiments in Couette-Taylor flow at very large Rey-
wall. nolds numbers. Hence, the generalized vonni&an solu-

tions have obvious advantages over those mentioned above.
IV. COMPARISON WITH EXPERIMENTS

The theoretical dependence of the tordei®n the Rey- V. LARGE-SCALE MODELING OF NONSTATIONARY

nolds numberR for turbulent Couette-Taylor flow and ex- PLANE COUETTE FLOW

perimental daty15] are presented in Table |, whei@ Let large-scale velocityi=(0,u(x,t),0), &(x,t) is dissi-
=CfRf2 and the friction coefficientci=2m(ui/vy)(b/a  pation ratex is the distance from a wall, and another wall is
-1)"~ moving in a direction parallel to the first one with relative

Theoretical(this mode] and experimental resistance laws velocity 2V . Equations of the model are reduced to
[16,17) are presented in Tables Il and IlI.

The theoretical dependence of the mean velocity on the atu:ax(g/axu)—aai{[SZ/(axu)f’]aiu}, (15)
distance from an inner cylinder for turbulent Couette-Taylor
flow and experimental datel8] are presented in Table V. ove = Ble|dgu| — k20, el (au)2dee ]}
There is an agreement between the model and experimental
data at high Reynolds numbers. - y{&i[szl(&xu)sais]}. (16)

There are several competing models. The Saffman model
being applied to Couette-Taylor flow had to be solved nuf regularizing constanter=0 andy=0, the system of the
merically, and the solution depended on three constants @fquations has the solutiofig]
the model[19]. Special models for turbulent Couette-Taylor

flow were put forward[15,20,2]. Besides von Kaman— u=u*«"*Intan(wx/4h), 17
Prandtl constants, solutions from these models include an
additional constant or constants. For example, a simple e=mu*3/(2kh)csd wx/2h). (19

model[15] with two matched logarithmic layers depends on
the distance(in dimensionless forinat which these layers TABLE IV. Dependence of experimentfl8] and theoretical
(model presentgdmean velocity on cylinder gap width, Reynolds
TABLE II. Experimental[16] and theoreticaimodel presented ~ humberR=5.03x 10, radius ratica/b=2/3 (inner cylinder rotates,
resistance laws; =log,((27; X 10%/pv?), radius ratioa/b=0.685,  outer cylinder is at rest
Reynolds numbeR,;=v,(b—a)/v (inner cylinder rotates, outer

cylinder is at rest (r-a)/(b-a) U/U 1expt U/U 1iheory
logyoR; gexpt {theory 0.187 0.448 0.43
0.318 0.425 0.41
2.5 1.01 0.87 0.449 0.405 0.40
3.0 0.72 0.69 0.579 0.391 0.39
3.5 0.46 0.51 0.708 0.373 0.38
4.0 0.29 0.38 0.841 0.356 0.36

4.5 0.18 0.27 0.907 0.345 0.34
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These expressions are well-known vonrian solutions for  ness of the equations and makes it necessary to apply special
turbulent plane Couette flojl4]. The k-e model and the methods to solve the problem of long-term behavior. The
Reynolds stresses transport model give the same analyticaystem of equation was solved by method of lines, where
solutions[22]. It is doubtful that thek-e model would give  spatial derivatives were approximated by symmetric finite
analytical solutions for turbulent Couette-Taylor flow be- differences. The obtained system of stiff ODE was solved by
cause equations of the model should be modified with addithe modified Gear method from Fortran subroutine library
tional terms for rotating flow§23]. The requirement fonto ~ NAG-8. The Reynolds numbeR was choserR=25R,,
become the logarithmic wall function at the wall gives ahereR,=118 according t¢24], where experimental chaos

resistance law in circular Couette flow was observed. The number of inter-
. . nal p nodes was chosen to be=6 orN=7 (system of ODE
Velu* =k " IN[4CRU /(7V()], (19 with 12 or 14 equations If N<6, stationary state, the von

Karman solution is linearly stabld"self-regularization”).

WherER:\_/Ch/” is the Reynolds ”“f.”ber- It can be shown Available computers did not permit us to investigate the case
that there is a good agreement of this law with experlment?\lﬂw which is more interesting from a theoretical point of

of different authors at sufficiently large Reynolds numbers . S : )
X A view because the possibility exists of spatio-temporal chaos.
[8]. Large-scale nonstationary modeling is assumed to b

valid ata# 0,y# 0. For better resolution of domains near the ethod [25] was chosen o calculate_the Iargest_l_yapunov
moving walls, a homogenization of the problem exponent\,. The results are(a) A,=0.0016, N=6,aq
! =1O,a1=01,az=01, (b) 7\121.0N=6,ao=1.0,a1
p=Intan(xw/4h) (20) =0.1a,=0.1; (c) Ay=0.006N=7, ay=1.0a;=0.2a,
=0.2. Since solutions are bounded, the positive largest
is used. This is an extension of the Biot~+Ken transfor-  Lyapunov exponents are evidence of the deterministic chaos.
mation for mean velocity in the turbulent boundary layer. ItA power spectrum of the velocity in the computational ex-

is convenient to introduce new variables: periment(a) had a double broadband component, and in case
(c) a broadband component was not observed. In general we
D(p,t)=e(p,t)/eo(p), can see only about a qualitative agreement with experiment

[24].

F(p,t)=u(p,t) —uo(p),

where up=u*p« ! and gq=u*3x coshg)/(2hx) are von

Karman solution in newp coordinates. Boundary conditions
for the nonstationary problem are imposedpat = p*,p* There is an agreement between the presented model and
=Intan(m1*/4h), wherel* =h/u*, I* and p* is the skin  Couette-Taylor experimentgl5-18 about the resistance
friction lengths inx andp coordinates. These boundary con- Jaw and mean velocity at sufficiently large Reynolds num-
ditions are chosen aB(*p*,t)=1, d,D(+p*,t)=0, F  bers. It should be mentioned that the model gives a good
(£=p*,1)=0, dpF(£p,t)=0. agreement also with experimental d&2$] and bad agree-
Equations of the model with the new varialgeare ment with resistance laj27], as it was shown ifi8]. The
proposed model agrees completely with the Kolmogorov pic-
d9F = (m/2)coshp)dp[ D/(1+ kdpF)] ture of turbulent cascad@8], because the dissipation rate is
— ay(/2)cost(p) dy(coshp) d, the onl_y a_dditional_ Ia_rge_—scale parameter. Moreover,_ the
fluctuation in the dissipation rate according to the refined
X{D?(1+ kdyF) °Icosi(p)dpy[costip)d,F1}), (21)  Kolmogorov hypothesi§29] can be explained by the deter-
ministic chaos in the dynamics of large-scale variables of the
9D = a[ coshp)D|1+ kd,F|] model. Application of the presenteds“model” of turbu-
P lence to the flows in pipes and to the decay of the turbulence
~dp{D(1+ kdpF)“d5[costip)D]} is controversial, and now this point is under investigation. It

VI. CONCLUSIONS

_a2,<3(7p(c05r( p)(yp[DZ(jH-KO’;pF)*5/Cosﬁ(p)] is necessary to determine values of constants of the model
also. The model gives two possibilities in the description of
X dpicostip)dy[cosip)(D—1)]}). (22)  fully developed turbulence: Langevin equations with random

= K larizi | . . h forces, or a “strange-attractor” description with regularizing
0 mﬁ € regu arlflnr?loi)ﬁfrfators fess time-consuming, thesgyeatorgor their combination From the available experi-
are chosen in a slightly ditterent form, mental datd30], it seems that in turbulent Couette-Taylor
o4F = (m/2)cosH(p) g D/ (1+ kdF) flow we deal with “strange-attractor” behavior.

— a; cosh(p) d5,(D2d5,F)]1, 23
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