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Extended local balance model of turbulence and Couette-Taylor flow
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An extended local balance model of turbulence, based on a new transport equation for the dissipation rate
with a negative diffusion coefficient, is presented. Analytical solutions for the mean velocity and the dissipa-
tion rate for the turbulent Couette-Taylor problem are derived. The dependence of torque on the Reynolds
number is obtained. These solutions depend only on two constantsk50.4 andC59.5 of the turbulent bound-
ary layer and, within the limits of a narrow channel, are reduced to the well-known von Ka´rmán’s solutions for
planar Couette flow. Strange attractor behavior in this limit is also observed.

PACS number~s!: 47.27.Nz, 05.45.2a
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I. INTRODUCTION

The existing models of fully developed turbulence can
classified as large-scale models and small-scale mod
Small-scale models deal with eddies smaller than the inte
scale of turbulence~large eddy simulation in the Smagorin
sky type of models!. Subgrid Reynolds stresses depend
sentially on the spatial grid size. Large-scale models de
mine the integral scale of turbulence by means of
independent variables~or its derivatives!. In recent years,
there has been a great deal of interest in the possible con
tion between fully developed turbulence and determinis
chaos. There is evidence@1# that for some types of turbulen
flow there is a chaotic attractor with a dimension about
even for large Reynolds numbers. It may be expected
large-scale models demonstrate such chaotic behavior,
classical large-scale models such as the ‘‘k-« model,’’ ‘‘ k-v
model,’’ and models of Reynolds stresses transport give o
an extremely smooth distribution of such variables as m
velocity, kinetic energy, and dissipation rate in space and
time. Thus, the creation of new models with chaotic tem
rary ~at least! and realistic spatial distributions are very d
sirable in theoretical as well as in practical aspects~propaga-
tion of waves through turbulent medium, weather forecas!.

Investigations of deterministic chaos in extended syste
are mostly carried out based on the Kuramoto-Sivashin
equation@2,3#. The essential dependence on the initial co
ditions is provided by a negative coefficient of diffusio
Regularization of such ill-posed mathematical problems
obtained by adding the operatorD2 (D denotes Laplace’s
operator! in these equations. A model with a negative co
ficient of turbulent viscosity was considered in@4#, and a
hypothesis of ‘‘a negative diffusion’’ of vorticity was pro
posed in@5#. They stimulated us to present an alternat
model of turbulence.

II. TURBULENCE MODEL

A hypothesis of the negative diffusion of the dissipati
rate and an extended local-balance model were put forw
in @6# and developed in@7,8#,
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] tui1uj] jui52]p* 1] j~nT] jui !2a]2~DT]2ui !, ~1!

] t«1uj] j«5b@k«S2k21] j~nT] j«!#2g]2~DT]2«!, ~2!

] iui50, ~3!

whereui is the mean, or large-scale, velocity (i 51,2,3), «
5 1

2 ^n(] jui81] iuj8)
2& denotes the dissipation rate,]25] i] i is

the sum overi, p* 5%21p1^ui8ui8&/3 is the modified pres-
sure, a,b,g denote constants of the model,k is the von
Kármán constant,S is the invariant of the strain rate tenso
S5A2Si j Sji with Si j 51/2(] jui1] iuj ), nT5«/S2 is a coef-
ficient of turbulent viscosity, andDT5«2/S5 is a coefficient
of ‘‘superviscosity,’’ derived from dimensional analysis.

Very simple but unusual assumptions are made. It is
sumed that the transport equation of the dissipation rate
turbulent energy depends only on the dissipation rate its
the invariantS, and their spatial derivatives. A conservativ
form of the equation is postulated. The first linear term
the right-hand side of Eq.~2! provides the growth of the
dissipation rate. It corresponds to the growth of small-sc
vorticity under strong shear strain@9# and this term is similar
to linear terms in the well-known Saffmank-w model @10#.
In order to compensate this source term in Eq.~2!, the sec-
ond term must be included with a negative coefficient
diffusion. It can be easily seen in a logarithmic bounda
layer:«5u* 3/(kx), S5u* /(kx), whereu* is the skin fric-
tion velocity andx is the distance from a wall. This situatio
is different from the well-knownk-« model @11#, where the
diffusion of the dissipation rate is the usual diffusion with
positive coefficient of diffusion. The third term on the righ
hand side of Eq.~2! cuts off small-scale components of th
dissipation rate and limits the growth of the dissipation r
due to the cube of the dissipation rate outside of the logar
mic boundary layer. This regularizing term is equal to ze
inside the logarithmic boundary layer, where Reyno
stresses are constants. The expression for turbulent visc
nT5«/S2 can be readily derived from the approximation
the turbulent energy local balance: production is equal
dissipation in the equation of balance of turbulent ene
@12#:

^ui8uj8&] jUi52n^]kui8]kui8& ~4!
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or

2^ui8uj8&] jUi5«. ~5!

Indeed, if we set

2^ui8uj8&52nTSi j 1d i j ^ui8ui8&/3 ~6!

and substitute this expression in the equation of the lo
turbulent energy balance, then turbulent energy comes
from this equation due to the incompressibility condition.
was done for the first time in@13#. In this manner we obtain
the expression for the coefficient of turbulent viscosi
which is written above.

Boundary conditions are determined as in the stand
‘‘ k-« model’’ by the wall functionsu5u* k21 ln Cu*x/n and
«5u

*
3 /(kx), x→0, wherex is the distance from the wal

andu* is the skin friction velocity.
The first term on the right-hand side in the dissipation r

transport equation can be explained by the total increas
small-scale vorticity under strong large-scale shear. The
ond term compensates for the first in the logarithmic tur
lent boundary layer~‘‘negative diffusion’’ of dissipation ap-
pears in a formal way!. Terms in both evolutionary equation
for u and « with spatial derivatives of fourth order do no
eliminate the existence of the logarithmic layer in the mod
but they do cut off small-scale modes and limit the growth
the unstable integral scale-size modes of large-scale velo
and dissipation.

Note that the model applied to the plane turbulent Cou
flow possesses a self-regularizing property~being considered
on a large-scale spatial grid!. The stationary solution, coin
ciding with von Kármán solution@14#, is stable@7#.

III. TURBULENT COUETTE-TAYLOR FLOW

Let us consider turbulent flow between two contrarotat
cylinders ~or when one of them is at rest!. v1 denotes the
rotational velocity of the inner cylinder,v2 is the rotational
velocity of the outer cylinder, and the radii of the cylinde
are a,b (b.a). Angular velocities arev15v1 /a and v2
5v2 /b. Let the inner cylinder rotate in a counterclockwi
direction ~or be at rest! and the outer cylinder rotate in
clockwise direction~or be at rest!. Boundary conditions are
defined asu5v12uin* k21 ln C(r2a)uin* /n if r→a, u52v2

1uout* k21 ln C(b2r)uout* /n if r→b, «5uin*
3k21(r 2a)21 if

r→a, «5uout* 3k21(b2r )21 if r→b, r is the distance from
the axis of the cylinders,uin* is the skin friction velocity at
the inner cylinder, anduout* is the skin friction at the oute
cylinder. For turbulent Taylor-Couette flow, as it is we
known, turbulent stressest vary with channel width as

tr 25t1r 1
25t2r 2

2 ,

wheret15uin*
2 andt25uout* 2 .

As we limit ourselves to a stationary problem, the reg
larizing spatial derivatives of fourth order will be omitte
Then we shall seek the solutionsu5u(r ) and«5«(r ). The
dissipation rate transport equation in the cylindrical coor
nates will be

k«S2k21r 21] r~r«S22] r«!50. ~7!
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Taking into account the local balance assumption~5!, we
havetS5« (t is known!, and excludingS, the equation for
the dissipation will be reduced to a nonlinear ordinary d
ferential equation for«:

«2r 2t1
21r 1

222k22r 21] r~r 23t1
22r 1

4«21] r«!50. ~8!

This equation is readily reduced to standard form by
substitutionq5r 4, and returning to the initial variabler we
shall have a unique solution satisfying the boundary con
tions @6,8#:

«54a3uin*
3pk21~b42a4!21 csc@p~r 42a4!/~b42a4!#.

~9!

We shall have for the cylinder geometryS52] r(u/r ) for
the chosen direction of the cylinders’s rotations. Due toS
5«/t, the resulting equation for the mean velocity is

2r ] r~u/r !54pr 2auin* k21~b42a4!21

3csc@p~r 42a4!/~b42a4!#. ~10!

After integration over the gap, the mean velocity is

u524aruin* pk21~b42a4!21

3E
p

r

R csc@p~R42a4!/~b42a4!#dR1v0r , ~11!

wherev0 is an integration constant,p is an arbitrary point,
and a,p,b. The integral has singularities atr 5a and r
5b, thus it is convenient to regularize the integral by su
tracting the corresponding singularities. Valuesv0 and uin*
can be obtained by making the solution foru fit the logarith-
mic wall functions atr 5a and r 5b. The arbitrary constan
p is eliminated in the final formula, and a nonlinear algebr
equation at this stage~a resistance law such as that of vo
Kármán–Prandtl! is derived foruin* . Omitting evident alge-
braic transformations, the final results are

u~q!/~v1q!524zk21p~Q421!21J1

2zk21ln@CRz~q21!/~Q21!#11,

~12!

where

J1~q,Q!5E
1

q

„x$csc@p~x421!/~Q421!#

2~Q421!~4p!21~x21!%…dx. ~13!

Here, R5v1(b2a)/n is the Reynolds number,q5r /a, Q
5b/a, andz5uin* /v1 ~dimensionless skin friction velocity! is
calculated from the nonlinear equation~resistance law!

4Quin* pk21~Q421!21J01uin* Qk21 ln@Cuin* ~b2a!/n#

1uout* k21 ln@Cuout* ~b2a!/n#5v21v1Q, ~14!
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where J05*1
Q dx$x csc@p(x421)/(Q421)#2(Q4

21)(4p)21(x21)212(Q421)(4p)21Q22(Q2x)21%.
It can be shown that the solution is reduced to a v

Kármán solution@14# for plane Couette flow in the narrow
gap limit @8#:

u5u* k21ln tan@xp/~4h!#,

«5u* 3k21~2h!21 csc@xp/~2h!#,

where 2h is the channel width andx is the distance from a
wall.

IV. COMPARISON WITH EXPERIMENTS

The theoretical dependence of the torqueG on the Rey-
nolds numberR for turbulent Couette-Taylor flow and ex
perimental data@15# are presented in Table I, whereG
5cfR

2 and the friction coefficientcf52p(u1* /v1)2(b/a
21)22.

Theoretical~this model! and experimental resistance law
@16,17# are presented in Tables II and III.

The theoretical dependence of the mean velocity on
distance from an inner cylinder for turbulent Couette-Tay
flow and experimental data@18# are presented in Table IV
There is an agreement between the model and experim
data at high Reynolds numbers.

There are several competing models. The Saffman mo
being applied to Couette-Taylor flow had to be solved n
merically, and the solution depended on three constant
the model@19#. Special models for turbulent Couette-Tayl
flow were put forward@15,20,21#. Besides von Ka´rmán–
Prandtl constants, solutions from these models include
additional constant or constants. For example, a sim
model@15# with two matched logarithmic layers depends
the distance~in dimensionless form! at which these layers

TABLE I. Dependence of experimental@15# and theoretical
~model presented! dimensionless torqueG on the Reynolds numbe
~inner cylinder rotates, outer cylinder is at rest!, radius ratioa/b
50.7253.

R Gexpt Gtheory

103 4.03105 1.03105

104 8.43106 5.43106

105 4.23108 3.33108

106 2.731010 2.231010

TABLE II. Experimental@16# and theoretical~model presented!
resistance laws,z5 log10(2t13103/rv1

2), radius ratioa/b50.685,
Reynolds numberR15v1(b2a)/n ~inner cylinder rotates, oute
cylinder is at rest!.

log10 R1 zexpt z theory

2.5 1.01 0.87
3.0 0.72 0.69
3.5 0.46 0.51
4.0 0.29 0.38
4.5 0.18 0.27
n

e
r

tal

el
-
of

n
le

are matched. It was chosen in the middle of the gap. I
evident if the gap is narrow, but where is the matching po
that should be chosen in the case of the wide gap an
arbitrary rotating velocities of cylinders?

Since solution~14! does not include constants besidesk
50.4 andC59.5, it can be applied for arbitrary turbulen
Couette-Taylor flow~except for corotating cylinders, wher
the shear strain rate is not large enough!. Thus, the presented
generalized von Ka´rmán solutions can be used as a test f
future experiments in Couette-Taylor flow at very large Re
nolds numbers. Hence, the generalized von Ka´rmáan solu-
tions have obvious advantages over those mentioned ab

V. LARGE-SCALE MODELING OF NONSTATIONARY
PLANE COUETTE FLOW

Let large-scale velocityu5„0,u(x,t),0…, «(x,t) is dissi-
pation rate,x is the distance from a wall, and another wall
moving in a direction parallel to the first one with relativ
velocity 2VC . Equations of the model are reduced to

] tu5]x~«/]xu!2a]x
2$@«2/~]xu!5#]x

2u%, ~15!

] t«5b$«u]xuu2k22]x@«/~]xu!2]x«#%

2g$]x
2@«2/~]xu!5]x

2«#%. ~16!

If regularizing constantsa50 andg50, the system of the
equations has the solutions@8#

u5u* k21 ln tan~px/4h!, ~17!

«5pu* 3/~2kh!csc~px/2h!. ~18!

TABLE III. Experimental @17# and theoretical~model pre-
sented! resistance laws,z5 log10(t2 /rv2

2), radius ratioa/b50.75,
Reynolds numberR25v2(b2a)/n ~inner cylinder is at rest, oute
cylinder rotates!.

log10 R1 zexpt z theory

4.04 23.27 23.46
4.36 23.52 23.51
4.53 23.50 23.55
4.64 23.53 23.58
4.75 23.54 23.59

TABLE IV. Dependence of experimental@18# and theoretical
~model presented! mean velocity on cylinder gap width, Reynold
numberR55.033104, radius ratioa/b52/3 ~inner cylinder rotates,
outer cylinder is at rest!.

(r -a)/(b-a) U/U1expt U/U1theory

0.187 0.448 0.43
0.318 0.425 0.41
0.449 0.405 0.40
0.579 0.391 0.39
0.708 0.373 0.38
0.841 0.356 0.36
0.907 0.345 0.34
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These expressions are well-known von Ka´rmán solutions for
turbulent plane Couette flow@14#. The k-« model and the
Reynolds stresses transport model give the same analy
solutions@22#. It is doubtful that thek-« model would give
analytical solutions for turbulent Couette-Taylor flow b
cause equations of the model should be modified with a
tional terms for rotating flows@23#. The requirement foru to
become the logarithmic wall function at the wall gives
resistance law

VC /u* 5k21 ln@4CRu* /~pVC!#, ~19!

whereR5VCh/n is the Reynolds number. It can be show
that there is a good agreement of this law with experime
of different authors at sufficiently large Reynolds numb
@8#. Large-scale nonstationary modeling is assumed to
valid ataÞ0,gÞ0. For better resolution of domains near t
moving walls, a homogenization of the problem

p5 ln tan~xp/4h! ~20!

is used. This is an extension of the Biot–Ka´rmán transfor-
mation for mean velocity in the turbulent boundary layer.
is convenient to introduce new variables:

D~p,t !5«~p,t !/«0~p!,

F~p,t !5u~p,t !2u0~p!,

where u05u* pk21 and «05u* 3p cosh(p)/(2hk) are von
Kármán solution in newp coordinates. Boundary condition
for the nonstationary problem are imposed atp56p* ,p*
5 ln tan(p l * /4h), where l * 5h/u* , l * and p* is the skin
friction lengths inx andp coordinates. These boundary co
ditions are chosen asD(6p* ,t)51, ]pD(6p* ,t)50, F
(6p* ,t)50, ]pF(6p,t)50.

Equations of the model with the new variablep are

] tF5~p/2!cosh~p!]p@D/~11k]pF !#

2a1~p/2!cosh~p!]p„cosh~p!]p

3$D2~11k]pF !25/cosh2~p!]p@cosh~p!]pF#%…, ~21!

] tD5a0@cosh~p!Du11k]pFu#

2]p$D~11k]pF !22]p@cosh~p!D#%

2a2k3]p„cosh~p!]p@D2~11k]pF !25/cosh2~p!#

3]p$cosh~p!]p@cosh~p!~D21!#%…. ~22!

To make regularizing operators less time-consuming, th
are chosen in a slightly different form,

] tF5~p/2!cosh~p!]p@D/~11k]pF !

2a1 cosh~p!]pp
2 ~D2]pp

2 F !#, ~23!

] tD5a0@cosh~p!Du11k]pFu#2]p@D~11k]pF !22#

3]p@cosh~pD!#2a2cosh~p!]pp
2 ~D2]pp

2 D !. ~24!

Coefficient cosh(p) in these equations characterizes t
growth rate of the integral turbulent scale in the directi
from a wall to the center of the channel. It results in a st
cal

i-

ts
s
e

t

se

-

ness of the equations and makes it necessary to apply sp
methods to solve the problem of long-term behavior. T
system of equation was solved by method of lines, wh
spatial derivatives were approximated by symmetric fin
differences. The obtained system of stiff ODE was solved
the modified Gear method from Fortran subroutine libra
NAG-8. The Reynolds numberR was chosenR525RCr ,
hereRCr5118 according to@24#, where experimental chao
in circular Couette flow was observed. The number of int
nal p nodes was chosen to beN56 or N57 ~system of ODE
with 12 or 14 equations!. If N,6, stationary state, the vo
Kármán solution is linearly stable~‘‘self-regularization’’!.
Available computers did not permit us to investigate the c
N→`, which is more interesting from a theoretical point
view because the possibility exists of spatio-temporal cha
Method @25# was chosen to calculate the largest Lyapun
exponent l1. The results are~a! l150.0016, N56,a0
51.0,a150.1,a250.1; ~b! l151.0,N56,a051.0,a1
50.1,a250.1; ~c! l150.006,N57, a051.0,a150.2,a2
50.2. Since solutions are bounded, the positive larg
Lyapunov exponents are evidence of the deterministic ch
A power spectrum of the velocity in the computational e
periment~a! had a double broadband component, and in c
~c! a broadband component was not observed. In genera
can see only about a qualitative agreement with experim
@24#.

VI. CONCLUSIONS

There is an agreement between the presented model
Couette-Taylor experiments@15–18# about the resistance
law and mean velocity at sufficiently large Reynolds nu
bers. It should be mentioned that the model gives a g
agreement also with experimental data@26# and bad agree-
ment with resistance law@27#, as it was shown in@8#. The
proposed model agrees completely with the Kolmogorov p
ture of turbulent cascade@28#, because the dissipation rate
the only additional large-scale parameter. Moreover,
fluctuation in the dissipation rate according to the refin
Kolmogorov hypothesis@29# can be explained by the dete
ministic chaos in the dynamics of large-scale variables of
model. Application of the presented ‘‘« model’’ of turbu-
lence to the flows in pipes and to the decay of the turbule
is controversial, and now this point is under investigation
is necessary to determine values of constants of the m
also. The model gives two possibilities in the description
fully developed turbulence: Langevin equations with rand
forces, or a ‘‘strange-attractor’’ description with regularizin
operators~or their combination!. From the available experi
mental data@30#, it seems that in turbulent Couette-Taylo
flow we deal with ‘‘strange-attractor’’ behavior.
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